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Unitarizable representations of the deformed para-Bose 
superalgebra Uq[0sp(l/2)] at roots of 1 

T D Palevt and N I Stoilova? 
International Centre for Theoretical Physics, 34100 Trieste, Italy 

Received 13 June 1995 

Abstract. The unitarizable irreps of the deformed para-Bose superalgebra pB,, which is 
isomorphic to Uq[osp(l/2)], are classified at q being root of 1. New finite-dimensional irreps 
of U,[osp(l/2)1 are found. Explicit expressions for the maIrix elements are written down. 

1. Introduction 

In the present paper we study unitarizable root of unity representations of the Hopf algebra 
pB,(l) z pB,, introduced in [l]. It is generated (essentially) by one pair of deformed 
para-Base operators U*.  The irreps of p B ,  at generic values of q are infinite-dimensional 
and are realized in deformed para-Bose (pB) Fock spaces F ( p ) ,  p E C [I]. The multimode 

was defined in [2-51. The case of any number of deformed para-Fermi operators was 
worked out in [6]. 

So far various deformations of para-Bose and para-Fermi statistics have been considered 
from different points of view [7-221.  some of them are not related to any Hopf 
algebra structure. A guiding principle of the approaches in [l-51, which we follow, 
is to preserve, similar to the non-deformed case [23], the identification of pB,(n) with 
U9[osp(l/2n)]: pB,(n) is an associative superalgebra isomolphic (as a Hopf algebra) 
to the deformed universal enveloping algebra U,[osp(l/Zn)] of the orthosymplectic Lie 
superalgebra osp(l/2n). 

using the 
comultiplication, one can define new representations of the deformed operators (and hence 
of U9[osp(l/2n)]) in any tensor product of representation spaces. In particular one can use 
the Fock space of n pairs of commuting deformed Bose operators [24-27], since they give 
a representation of Uq[osp(1/2n)] [28]. Even in the non-deformed case the only effective 
technique for constructing representations of parabosons or of osp(l/2n) (for large n) is 
through tensor products of bosonic Fock spaces (see [29] for more disscusions in this 
respect). 

The definition of U,[osp( 1/2n)] in terms of its Chevalley generators is well known [30- 
351. Although for n > 1 the deformed pB operators U?, U:. . . . ,U: are very different from 

Hopf algebra pBq(n),  corresponding to n pairs of deformed pB operators u1 I +  ,a, , . . . ,U, =k 

The Hopf algebra structure of p$(n) has an important advantage: 

the Chevalley generators, the relations determining Uq[osp(l/2n)] through a, * I  , a 2 , .  . . ,a, h 

t Permanent address: Institute for Nuclear Research and Nuclear Energy. 1784 Sofia, Bulgaria; e-mail: 
palev@bgearn.bitnet. stoilovaObgeambitnet 

0305-4470/95lZ47275t1 G19.50 @ 1995 IOP Publishing Ltd 7275 



7276 

are not more involved [4,51. At n = 1, namely in the case we consider, a* are propoaional 
to the Chevalley generators of p B q  = U,[osp(l/Z)]. 

The finite-dimensional irreps of U,[osp(l/Z)I at generic q were constructed in [36,37]. 
Some root of unity highest weight irreps were also obtained in [37]; both highest weight 
and cyclic representations were studied in detail in [3840]. 

Our carrier representation spaces F ( p ) ,  p E C will be deformed Fock spaces [l], which 
are in fact the Verma modules used in [39]. For root of unity cases each such space is no 
more irreducible; it contains infinitely many invariant subspaces. The irreps are realized in 
appropriate factor spaces of F ( p )  with the vacuum being the highest weight vector. 

To our best knowledge the root of 1 irreps of U,[osp(l/Z)] obtained in section 3.2 and 
those labelled with an integer p (sections 3.'1.1, 3.1.2, 3.3) have not been described in the 
literature so far. Our other main result is the classification of the unitarizable Fock irreps of 
pB, (= unitarizable Verma representations of U,[osp(l/2)]) at mots of 1 (see (4.2)). We 
write down explicit expressions for the transformation of the basis under the action of the 
deformed pB generators. 

The reason to pay special attention to the unitarizable representations stems from 
physical considerations. In all applications of deformed parastatistics known to us [7- 
221 it is assumed that the Hermitian conjugate (a-)? of the annihilation operator a- equals 
the creation operator a+: 

T D Palev and N I Stoilova 

(a-)+ =a+. (1.1) 

In the case of deformed para-oscillators [9,151, for instance, or more generally in any 
deformed quantum mechanics (see for instance [41] and the references therein) the unitarity 
condition (1.1) is equivalent (as in the canonical case) to the requirement that the position 
and the momentum operators be self-adjoint operators. 

The paper is organized as follows. In section 2 we recall the definition of the deformed 
para-Bose algebra and its Fock representations at generic q. Section 3 is devoted to a 
detailed study of the root of 1 irreps. The non-decomposable representations both finite- 
dimensional and infinite-dimensional are also mentioned. The unitarizable representations 
are classified in section 4. Section 5 contains some concluding remarks. 

Throughout we use the following abbreviations and notation: C, all complex numbers; 
Z, all integers; Z+, all non-negative integers; %Z -(6, 1). the ring of all integers modulo 2; 
[ A ,  B ]  A B  - B A ,  [ A ,  B )  = A B  + B A .  

2. The para-Bose Hopf algebra PE, and its Fock representations 

TQ begin with we summarize some of the results from [l], slightly changing the notation. 

Definition 1. The para-Bose algebra p B , ,  q E C\{O, +l), is the associative superalgebra 
over C with unit 1 defined by the following generators and relations: 

Generators: a*, K*' (2.1) 

(2.2) Relations: KK-' = K - ' K  = 1 KU* = q* 'a*~  

&-grading: deg(K*') = 6 de&*) = i. (2.3) 

K - K-1 

4-4-' 
[a+. a-) = 

Setting K = qH with q = e?, q E C, one recovers as q --f 1 ( q  -+ 0) the defining 
relations of the non-deformed para-Bose operators [42] [{a$, a?), a'] = (c-q)a$+(6-()aq 
with H = [a+, a-) and [, q, E = f or 2z 1. 
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It has already been shown in [I] how p B ,  can be endowed with a comultiplication, a 

The (deformed) Fock space F ( p )  is defined for any p E C, postulating that F ( p )  

(2.4) 
At the limit q -+ 1 the above definition of F ( p )  reduces to the usual one (4-1~; 0) = 
O,u-atlp; 0) = pip; 0)), where p is the order of the parastatistics [42].  

counity and an antipode; here we shall be not concerned with this additional structure. 

contains a vacuum vector Ip; 0), namely 

a-lp; 0) = 0 Klp; 0) = qpIp;  0) (e HIP; 0) = P I P ;  0)). 

F ( p )  is an infinite-dimensional linear space with a basis 

[ p ;  n )  = (a+)"lp; 0) n E Z+. (2.5) 
Let 

The transformation of the basis (2.5) follows from (2.4). The relations below are written in 
a slightly more general form in order to accommodate also all root of 1 cases. For 

( 2 . 7 ~ )  Ip;O), Ip; I ) ,  ... 1 Ip;G 
set 

K I P ;  n) = q2"+"[p; n )  (2.76) 
a-lp; n )  = [n](n + p - 1Jlp: n - 1) ( 2 . 7 ~ )  
a-lp; n )  = [n + p - l ] [ n J l p :  n - 1 )  ( 2 .74  
a+lp;n) = Ip;n+ 1) n # t (2.7e) 

a+lp; t) = 0. (2.7fl 
The transformations of the basis (2.5) are given with (2.7a)-(2.7e) when L = 00. At generic 
q each Fock space F ( p )  is an infinite-dimensional simple (= irreducible) pB9 module [ l ] .  

for n = even number 
for n = odd number 

3. Root of unity representations 

If q is a root of 1 the pB,  module F ( p )  may no longer be irreducibIe. More precisely, 

Proposition 1. The Fock space F ( p )  is non-decomposable if and only if q = etinm/' for 
every m, k E Z such that q $ [rtl, hi], i.e. m # O(modk). 

ProoJ We exclude from consideration'q E [=kl,%i) since at these values of q the 
expressions (2.7) are not defined (at q = =k1 also p B q  is undefined). 

If q # etinm/' the coefficients in front of Ip;  n)  in (2.7c,d) vanish only for n = 0. Hence 
the only singular vector is the vacuum, i.e. F ( p )  is an irreducible module. If q = etirrm/' 
then, for instance, Ip; 2k) is a singular vector, a-lp; 2k) = 0. Therefore the proper subspace 
of F ( p ) ,  spanned on Ip; n ) ,  n 2k is an invariant subspace. Then equation (2.7e) yields 

0 

The algebras p B ,  corresponding to all possible values of m and k contain several 
isomorphic copies. Clearly we can always assume that k z 0 and that m and k are 
co-prime, i.e. m / k  is an irreducible fraction. Further we note that the algebras p B ,  
and pBqe are isomorphic for q = e h / k  and $ = etin(zktlm)/k whenever t = + and 
m = 1.2,  . . . , 2k  - 1 or = - and m = 1 , 2 , .  . . , k - 1 ,  since the generators Z* = U*( 

and f = -tK of pBic satisfy the defining relations (2.1)-(2.3) for PE, .  The case 5 = + 

that the representation is non-decomposable. This completes the proof. 
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indicates that we can set m E (1, 2, . . . ,2k - I]: the case t = - further shows that without 
loss of generality we can assume that m E (1,2, . . . , k - I ) .  The case k = 1 is excluded 
from these conditions. Thus, without losing any of the algebras pBq for which the Fock 
space F ( p )  is nondecomposable, we restrict m and k to values which we call admissible. 
The fraction m / k  is said to be admissible if 

T D Palev and N I  Stoilova 

m and k are co-prime k = 2,3,4, . . . . 
k (3.1) 

Passing to a discussion of the root of 1 representations, we first note that the vectors 

Ip; 0). Ip; 2k), Ip; 4k), . . . , jp; 2kN), . . . (3.2) 
are singular vectors in F ( p ) ,  a-lp; 2kN) = 0, N E Z+. The subspaces vp:WNl = 
span{lp; n)ln > 2kNJ are infinite-dimensional invariant subspaces of F ( p )  with highest 
weight vectors Ip; 2kN). Clearly 

F ( p )  = vip:O) 3 vp;W) 2 vip:4kj 3 . . ' 2 y p : Z k N )  2 ' ' '. (3.3) 
For each N e M E Z+ define a 2(M - N)k-dimensional factor space Wl,:WN),M = 
& W N ) / y p : W M ) .  Let tx be the equivalence class of x E tx. The vectors 
{ I ~ ; Z ~ N ) ,  t l p ; z k ~ + i ) ,  ~ I ~ : w N + z ) ,  . . . , t ~ , , : z k ~ - i )  constitute a basis in wp:&%".M.  The relations 
a*&,:,) = f & l p ; +  Kh,,:,,) = endow W~,,:XN),M with a structure of a p B 4  module. 
Observe that a+tl,:ZaM-I) = 0. 

with its representative Ip; n ) .  Then 
equations (2.7) with L = 2kM - 1 give the transformations of W l p : W N ) , M .  If M - N > 
1, equations (2.7) with L = 2kM - 1 define an non-decomposable finite-dimensional 
representation of pBq in WIp;zkN),M-for any p E C. If M - N = 1, W l p : M N ) . N + I  is 
either irreducible or non-decomposable. 

Proposition2. For each s E Z and N E Z+ the pBq modules Wlp:o),l and Wlp+4k,r:WNl,~+1 
are equivalent; they carry one and the same 2k-dimensional representation of pBq .  

ProoJ The one-to-one linear map ~ ( l p ;  n ) )  = Ip+4ks; n+2kN), n = 0,1,2,. . . ,2k-1 
of WI~:O),I  onto y p + 4 ~ , y : ~ ~ ~ ) . ~ + ~  is an intertwining operator, arp(lp; n ) )  = rp(alp; n)).a = 
a*, K .  In particular the matrices of the generators a* and K are the same in the basis of 

0 

In view of proposition 2 from now on we shall consider only the vacuum modules 

We shall simplify the noetion, identifying 

WI,,;O),I and in the basis of Wlp+4ks;~N),N+L, respectively. 

Wlp;o),,,  restricting also the values of p to the interval 

0 e Re(p) < 4k. (3.4) 
We write W ( l p ;  m). Ip; n ) )  whenever we wish to indicate that Ip; m). Ip; m + I ) ,  /p ;  m + 
2), . . . , Ip; n )  is a basis in the linear space W ( l p ;  m). lp ;  n)) .  In view of this WI, , :~) ,~ = 
W(lp; O), Ip; 7.!f - 1)). 

We proceed to study in detail the structure of the Fock spaces for different admissible 
values of m/k. To this end we will consider three cases: 3.1, k is even, m is odd; 3.2, k is 
odd, m is odd; 3.3, k is odd, m is even. 

3.1. The case k=even, m=odd 

If p is not an integer the coefficients ( n  + p - 1) in (2.7~) and [n + p  - I]  in (2.7d) never 
vanish. Therefore the vectors (3.2) are the only singular vectors in F ( p )  and the vacuum 
Ip; 0) is the only singular vector in W,,,:O).I. The eigenvalues of K on Ip; 0) are different 
for different p ,  obeying (3.4). This gives rise to the following 
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Proposition 3. The p B ,  modules W ( l p ;  O), Ip; 2k - 1)) are simple for p 9 (1 ,2 ,  . . . ,4k] .  
All of them are 2k:dimensional. The irreps corresponding to different p from (3.4) are 
inequivalent. The transformation of the basis is described with (2.7) for L = 2k - 1. 

3.1.1. Representations with even p.  
even values of p are no more irreducible. 

Proposition 4. To each p E {2 ,4 ,  ..., 4kJ there corresponds a simple pBq module 
W ( l p ;  O)), lp; L ) )  with a basis Ip; 0), Ip; l ) ,  . . . , [ p ;  L )  and values of L as follows: 

(3.5) 
(3.6) 

All modules W ( ( p ; O ) l p ; 2 k  - 1)) corresponding to 

L = 2k - p 
L = 4k - p 

for p E (2 ,4 . .  . . ,2k) 
for p E (2k + 2,2k + 4 , .  . . .4k].  

The transformation of the basis is described with the equations (2.7) for the above values 
of L. All 2k modules carry different, inequivalent ireps of pB,, 

Proof: We consider in detail thecase p E {2 ,4 ,  . . . ,2). Themodule W ( l p ;  O), Ip; 2k-1)) 
contains only two singular vectors Ip; 0 )  and l p ;  2k - p + l) ,  i.e. a-lp; 0) = 0, a-lp; 2k - 
p + 1) = 0. In view of (2.7e) W ( l p ;  0). Ip; 2k - I ) )  is non-decomposable. Its invariant 
subspace W ( l p ;  2k - p + l ) ,  Ip; 2k - I ) )  is simple. The factor space 

W ( l p ;  O ) ,  IP; 2k - l ) ) / W ( I p ;  2k - p + l ) ,  Ip; 2k - 1 ) )  

with a basis (lp;o). c lp : l ) ,  . . . , f ~ ~ , ; x - / ~ )  is turned into an irreducible p B ,  module setting 
ah,;,) = < u ; l p : n )  for any a = Q*, K. = tlp;x-p+l) = 0. As 
before we identify the equivalence classes with their representatives: = Ip; n ) .  

and the transformation relations of W(lp:  O), Ip; 2k - p ) )  are given with equations (2.7) for 
L = 2k - p. The transformations of the invariant subspaces are described also with (2.7), 
but for n =2k - p +  1,2k - p + 2  , . . . ,2k - 1 = L.  

The cases with p E (2k + 2,2k + 4..  . . , 4 k )  are similar. The only singular vectors 
in W(lp;O) ,  Ip;W - 1)) are the vacuum Ip;O) and lp;4k - p + 1). Therefore the 
invariant subspace W ( l p ;  4k - p +  I ) ,  Ip: 2k-  1 ) )  is irreducible and its transformations are 
described with (2.7) for n = 4k - p + 1,4k - p + 2,.  . . ,2k - 1 = L. The factor space 
W ( l p ;  0), Ip; 4 k - p ) )  is also irreducible and transforms according to (2.7) with L = 4k-p .  

Therefore 

Then W(IP; O), If: 2k - I ) ) / W ( l p ;  2.k - P + 1 ) .  Ip; 2k - 1 ) )  = W ( l p ;  01, Ip; 2k - p ) )  

We have four kinds of simple p B q  modules. which are pairwise equivalent: 

W { l ~ ; 2 k - ~ + l ) . I p ; 2 k -  1)) = W(lp’;O), Ip‘;4k-p‘)) 

W(IP; 4k - P + I ) ,  IP; 2k - 1)) = W ( ~ P ’ ;  O), If‘; U( - P’)) 
for p = 4k - p’ + 2 E {2,  4 ,  . . . ,2kJ  

for p 

(3.7) 

(3.8) 
For instance the intertwining opera:or of W ( l p ; 2 k  - p + 1). Ip;2k - 1)) onto 
W(lp’; O), Ip’; 4k - p’)) reads: 

4k - p’+2 E (2k + 2 , 2 k + 4 , .  . . ,4kJ.  

r p ( b  4)  = If’; E’) 

n = 2k - p +  I,zBk--plli(aiJ n’ = 0. 1.2,. . . ,4k - p’ .  (3.9) 
Thus we are left only with vacuum modules. It remains to show that all modules (3.5) and 
(3.6), i.e. 

Wllp;  O), IP; 2k - p ) )  and 
p E ( 2 , 4 , .  . . ,2k)  

W ( l p  +2k; O), Ip +2k: 2k - p ) )  
(3.10) 
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are inequivalent. To this end we observe that the modules corresponding to different 
p in (3.10) have different dimensions. The modules with the same dimensions, namely 
W ( l p ;  O), Ip; 2k - p ) )  and W(lp + 2k;  0), Ip + 2k; 2k - p ) )  have different spectra of the 

0 
It has been noted in [37,431 that the Casimir operator of Uq[osp(l/2)] is no longer 

sufficient to label the root of unity representations. In particular this is the case with the 
modules (3.10), which have the same dimension. The Casimir operator [36] reads in our 
notation: 

T D Palev and N I Stoilova 

Cartan generator K and therefore are also inequivalent. This completes the proof. 

ZCz(q) = qZKZ + q-ZK-2 + (42 - q - Z ) ( q  - q- ' ) (q2K + q- 2 - 1  K )a - +  a 
(3.11) 

Its eigenvalue is one and the same, C&) = +(qzP-' + q-2"+z) + 2 on four inequivalent 
modules, namely 

W(1p; 0). Ip; 2k - p ) )  W ( l p  + 2 k ;  O), Ip + 2k; 2k - p ) )  

2 2  - 2  t 2  - ( q Z - - q - ) ( a ) ( a ) .  

dim = 2.k - p + 1 
W(12k - p +2; 0 ) ,  12k - P +  2; p -2)) W(14k - p + 2 ;  0), 14.k - p + 2 ;  p -2)) 

dim = p - 1. (3.12) 
Let us add that the additional central elements 137,381 (a*)zx and (K)" do not 

distinguish among the inequivalent modules with the same dimension. In fact the operators 
(a*)% vanish within each simple module W(lp;  O), Ip; L)) .  

3.i.2. Represenfaions with odd p .  

Proposition 5. To each p E { 1 ,3 ,  . . . , 4 k -  1) there corresponds an irreducible pEq module 
W ( l p ;  0). Ip; L)) with a basis Ip; O), Ip; l ) ,  . . . , Ip; L ) ,  where L = p(k - l)(mod=). The 
transformations of the basis are given with equations (2.7) for the corresponding values of 
L. All these 2k modules carry inequivalent irreps of PE, .  

Proof: The proof is similar to that of proposition 4. We stress certain points only. The 
modules W ( l p ;  O), Ip; 2k - 1)) with p = k + 1.3k + 1 are irreducible; the rest of the 
modules 
W ( l p ;  O), lp;2k - 1 ) )  P E ( 1 , 3 , 5 , .  . . , 4 k  - I1 (3.13) 
are non-decomposable. Each module in (3.13) contains apart from the vacuum only 
one more singular vector. Therefore the invariant subspaces and the factor spaces are 
irreducible. Also here each invariant subspace is equivalent to a factor space. Therefore 
(up to equivalence) we are left only with the vacuum modules. The modules with the same 
dimension cannot be separated by the Casimir operator. They have, however, different 
spectra of the Cartan generator K. Hence they carry inequivalent representations of P E , .  

3.2. The case k = odd, m = odd 

For any N E Z+ (see (2.7)) a - l p ; k N )  = 0. Therefore the Fock spaces contain more 
singular vectors than in the general case (see (3.2)). Now 

(3.14) 
are singular vectors in F ( p ) .  For each N the subspace  VI,,:^^, = span(1p; n)ln 2 kN] 
is an infinite-dimensional non-decomposable invariant subspace of F ( p ) .  Because of the 
inclusions 

p # k +  1,3k+ 1 

I P :  O), I P :  k ) ,  I P :  a),.. . . I P ;  k N ) .  . . . 

F ( p )  = vlp:O) 2 y n : k )  3 VIp:M) 3 '.' 3 y ~ : k N )  3 ' '. 



Unitarizable root of I irreps of U,,[osp(lL?)] 7281 

one can build up various non-decomposable finite-dimensional pBq  modules. For each 
N < M s Z +  

w(lP; kN), IP; kM - 1 ) )  = y p : k N ) / y p : k M )  (3.15) 

is an (M - N)k-dimensional non-decomposable pB,, module with singular vectors 
Ip; k N ) ,  Ip; (k + l ) N ) ,  . . . , Ip; k(M - 1)). As before we do not distinguish between the 
equivalence classes and their representatives. Since a+RP;kM-1) = &+lp;kM-1) = 0 + 
u+[p;  kM - 1 )  = 0 the transformation of the factor space (3.15) is given with equations 
(2.7)forL = k M - 1 .  If M - N  = 1 ,  W ( [ p ;  kN), Ip; k ( N + l ) - 1 ) )  = f l p ; k ~ ) / f l p ; k ( ~ + 1 ) )  is 
either irreducible or non-decomposable. We ,are mainly concerned with the classification of 
the irreducible pB,, modules. Therefore, as a first step, we identify some equivalent modules. 
From proposition 2 we know that for a given p B,, algebra (i.e. for a fixed admissible fraction 
m / k )  all irreps can be extracted from the collection of the modules W ( l p ;  O), Ip; 2k - 1)) 
with 0 < Re(p) < 4k. According to (3.15) (when N = 0, M = 2) the above module is 
non-decomposable, It contains at least two singular vectors, namely Ip; 0) and 1p; k ) .  The 
subspace W ( [ p ;  k), Ip; 2k - 1)) is an invariant pB,, subspace and therefore the factor space 
W ( l p ;  0), Ip; k - 1 ) )  = W ( l p ;  0 ) ,  I p ; 2 k - l ) ) / W ( [ p ;  k ) ,  Ip; 2 k - 1 ) )  is also a pBq module. 

Proposition 6. The collection of all pB,, modules W ( l p ;  0), Ip; k - 1)) is equivalent to the 
collection of all invariant subspaces W ( l p ;  k ) ,  Ip; 2k - I ) )  when 0 < Re(p) < 4k. More 
precisely, 

W ( l p ;  0 ) ,  Ip: k - 1 ) )  = W ( l p  + 2k; k), Ip + 2k; 2k - I ) )  0 c Re(p) < 2k ( 3 . 1 6 ~ )  
W ( l p ;  0), Ip; k - 1 ) )  = W ( l p  - 2k; k ) ,  Ip - 2k; 2k - I ) )  2k < Re@) < 4k.  (3.16b) 

Proof: The transformations of W ( l p ;  0). Ip; k -  1)) are given with equations (2.7) for L = 
k-1. The same equations describe the action of the p B ,  generators on W ( l p ;  k), Ip; 2k -1 ) )  
for L = 2k - 1 and n = k. k + 1. . . . , 2 k  - 1 .  The corresponding intertwining operator fp, 
defined on the bases, reads: 

~rp(lp; n ) )  = Ip+2tk ;  n + k )  n = 0 , 1 , 2 ,  ... .k  - 1 (3.17) 

where 
In view of proposition 6 we shall consider only the vacuum modules W ( l p ;  O), Ip; k - 

I)), restricting as before the values of p to the interval (3 .4) .  
If p is not an even number the coefficients (n + p - 1 )  in (2.7~) and [n + p - 11 in 

(2.7d) never vanish. Therefore the vectors (3.14) are the only singular vectors in F ( p )  and 
the vacuum [ p ;  0) is the only singular vector in W ( l p ;  0), Ip; k- 1)). In contrast, if p is an 
even number W ( l p ;  0), Ip; k - 1 ) )  contains an extra singular vector. We collect the results 
in a proposition. 

Proposition 7. The pB,, modules W ( l p ;  O), l p :  k - 1 ) )  are simple for p $ ( 2 , 4 , .  . . , 4 k )  
with L = k - 1 .  To each p E {2,4, . . . , 4 k )  there corresponds an irreducible pBq module 
W(lp; O), Ip; L)) with L = (k - p)(mod k), transformed according to equations (2.7). All 
these modules carry inequivalent irreps of p B 4 .  

= 1 corresponds to ( 3 . 1 6 ~ )  and = - 1  to (3.16b). 

~~ 

3.3. The case k = odd, m = even 

According to proposition 2 the irreps (up to equivalence) are realized in the vacuum modules 
W ( l p ;  O), l p ;  2k-1)) with 0 c~Re(p)  < 4k. For the algebras from this class one can further 
restrict the values of p .  
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Proposition 8. The following modules are equivalent: 

W(lp; 0). Ip; 2k - 1)) = W(lp + 2k; 0). Ip + 2k; Zk - 1)) 

T D Palev and N I Stoilova 

for 0 c Re@) < 2k 

(3.18) 

(3.19) 

Prooj? The intertwining operators are fp(lp; n)) = Ip + ruk: n )  for n = 0,1, . . . , 2 k  - 1, 
where CY = 2 for (3.18) and CY = 1 for~(3.19). 

~ ( I P ;  0)- IP;  2k - 1)) = W(lp+k: O), Ip +k: 2k - 1)) 
for 0 < Re(p) < k and m = 4(mod4). 

Hence, without loss of generality we assume 

0 < Re(p) < 2k if m = 2(mod4) and 0 e Re(p) < k if m = 4(mod4). 
(3.20) 

Proposition 9. To each m = 2fmod4) with 0 < Re(p) < 2k and to each m = 4(mod4) 
with 0 e Re@) < k there corresponds an irreducible pB,  module W(lp:  O), Ip; L ) )  with 
L = 2k - 1 if p is not an integer and with L = p(k - l)(modZk) if p is an integer. All 
such modules are inequivalent. They transform according to (2.7). 

We skip the proof. 

4. Unitarizable representations 

In the present section we classify the unitarizable Fock representations of the deformed 
para-Bose superalgebra p B , .  The concept of an unitarizable representation of an arbitrary 
associative algebra A depends on the definition of the antilinear anti-involution o : A + A 
and on the metric in the corresponding A-module. 

Having in mind the physical condition (1.1) and the requirement the 'Hamiltonian' H 
to be a Hermitian operator, we define o on the generators a* and K as @(a*) = UT, 

o ( K * ' )  = K+l and extend it on p B ,  as an antilinear anti-involution: w(aa + ob) = 
CY*W(U) + p w ( b ) ,  w(ab) = w(b)w(a) for all a, b E pB</ and CY. 

The representation of p B ,  in a Hilbert space W with scalar product (,) is unitarizable 
if w(a) = at for all a E pB, .  On the generators of pB,  the unitarity condition 
yields (a-)t = a+, Kt = K - ' .  The problem is to select those irreducible modules 
W ( l p ;  0), Ip: L ) )  for which the unitarity condition can be satisfied. To this end we introduce 
a new basis Ip; n) = a(p;  n) lp ;  n),  n = 1,2, .  . . , L ,  a(p: n )  E U2 which is declared to be 
orthonormal. Then the unitarity condition is equivalent to the requirement that the following 
two equations be satisfied: 

E CC. 

2sin($r(m/k)(n + p))cos(ix(m/k)(n + 1)) 
sin(nm/k) 

n = even (4.1~)  

Zsin(lz(m/k)(n + I))cos($n(m/k)(n + p ) )  
sin(nm j k )  

n = odd. (4.lb) 

The unknowns in the above equations are the algebras pB, ,  i.e. the admissible pairs m/k 
and the irreducible modules W(lp: 0), Ip; L)), i.e., the values of p and L. Equations (4.1) 
have solutions only if their right-hand side is a non-negative number for any n from the 
basis in W ( l p :  0), Ip; L) ) .  Thus, the problem is to solve a set of inequalities. Below we list 
the algebras pB,  with q = eiinm/k in terms of the admissible m and k and their unitarizable 
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representations. 

The algebra pBq Unitarizable modules 
(1) m = l , k  = 3,5,7, ... 
(2)  m = 1,k = 2,4,6, ... 
(3) m = 1,k = 3,5,7, ... 

~ ( I P ;  O), Ip; k - 1)) 0 < P < 2 
W([p;O), [p;k -p)) p = 1,3,5; .... k - 1 
W([p;O), Ip;k -p ) )  p = 2 , 4 , 6  ..., k - 1 (4.2) 

(4) m = l(mod4), k = 2,3,4,. . . 
(5)  m = 3(mod4), k = 2,3,4, .  . . 

W(lk - 1; 0), Ik - 1; 1)) 
W(13k - 1; 0), 13k - 1; 1)) 

(6) in = 3, k =~lO, 12,14,. . . W(13k - 3; 0), 13k - 3; 3)). 

The above equations indicate that the algebras pBq corresponding to m = 1 and any odd 
k have a continuous class of unitarizable representations. In all other cases the number 
of unitarizable irreps is finite and in fact each algebra with m # 1 has no more than two 
representations. In cases (4) and (5) the representation is two-dimensional. In the new basis 
the matrices of the generators read: 

a- = (0 ,/cos $n(m/k)/sin $n(in/k) 
0 0 

0 
a+ = ( J  cosiii(m/k)/sin fx(m/k) 0 (4.3) 

K = (  0 iefiam/k O )  ' 

i e - j i a m / k  

' Similarly, the four-dimensional representation from the case (6) reads: 

0 

(4.4) 

.~ 
0 ,/cos(9n/2k)/sin(3n/2k) ' 0 

0 ,/2Zq?zp~ 0 
a-=( '  0 0 0 ,/- 

0 0 0 0 
ie-9ia/Zk 0 0 

ie-3ix/2k 0 
K = (  ; 0 ie3WW 0 

with a+ represented by the transposed matrix of a-. Note that the algebras with m = 3 and 
k = 10, 12, 14,. . . have only two unitarizable irreps, namely (4.3) and (4.4); the algebras 
with m = 3 and k = 2,4,6,8 and those with m = 5,7,9, . . . have only a two-dimensional 
unitarizable irrep. The algebras PE,, with even m have no unitarizable representations at 
all. 

The transformation relations of all unitarizable modules can be written in a compact 
form. In the orthonormal basis Ip; n) equations (2.7) read 

. ~ l ~ ;  n) = e-finm/km+p) IP; 

0 0 

(4.5~) 

Zsin($r(m/k)n) cos($x(m/k)(p + n  - 1)) 
Ip; n - 1) n = even (4.56) d sin(nm/ k) 

a-lp; n )  = 

Zsin(fn(m/k)(p + n - 1)) cos($r(m/k)n) 
sin(nm/k) lp; n - 1) n = odd ( 4 5 )  a-b; n )  = 

Zsin($ii(m/k)(p + n ) )  cos(in(in/k)(n + 1)) 
sin(nm/ k) a+lp; n)  = [p; n + 1) n = even (4.54 
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2sin($z(m/k)(n + l))cos($n(m/k)(p+n)) 
Ip; n + 1) n =odd. sin(zm/k) 

(4.54 
J a+lp; n) = 

5. Concluding remarks and discussions 

We have studied root of unity representations of the deformed para-Bose algebra pBq = 
Uq[osp(l/2)] with a particular emphasis on the unitarizable irreps. All of them are realized 
in finite-dimensional modules with a highest and a lowest weight. The irreps from section 3.2 
and also all irreps corresponding to integer p (except p = k + 1,3k + 1 in section 3.1.2) 
are new. 

In the non-deformed case the representations of the para-Bose operators, corresponding 
to an order of the statistics p = 1 reduce to usual Bose operators [42]. In [l] it was shown 
that a similar relation holds in the deformed case for generic q. It is straightforward to 
check that in the cases p = 1, m = 1, k = 2,3, . . . equations (4.5) recover also all root of 
unity unitarizable irreps of the deformed Bose operators [24-27] as given in [I]. 

Using the approach of the present paper one can try to construct representations 
(including root of 1 representations) for pBq(n)  = U,,[osp(l/2n)]. To this end one can 
use n-pairs of deformed pB operators as given in [Z, 4,5]. The solution, however, is not 
going to be easy for arbitrary values of p .  if one takes into account that the problem has 
not been solved even in the non-deformed case. Only the case with p = 1 is easy. It leads 
directly to root of 1 representations of Uq[osp(l/2n)l, if one uses q-commuting deformed 
Bose operators as defined in [5]. Other root of 1 representations based on a realization with 
commuting q-Bose operators (which means also the case p = 1) were obtained in [44]. 
In this relation we note that n pairs of commuting deformed Bose operators are already 
generators of U,,[osp(l/2n)J (in the q-Bose representation). Therefore they provide the 
simplest q-Boson realization of Uq[osp(l/2n)J [28]. 

Finally we mention that all our representations correspond to q being an even root of 
unity: 4" = 1. In the case of deformed simple Lie algebras this seems to be the more 
difficult case. Complete results only exist for q being odd roots of 1 1451. 
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