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Unitarizable repfesentations of the deformed para-Bose
superalgebra U,[osp(1/2)] at roots of 1

T D Palevf and N I Stotlovat
International Centre for Theoretical Physics, 34100 Trieste, Italy

Received 13 June 1995

Abstract. The unitarizable irreps of the deformed para-Bose swperalgebra pB,, which is
isomorphic to U, [osp(1/2)], are classified at ¢ being root of 1. New finite-dimensional irreps
of Uylosp(1/2)] are found. Explicit expressions for the matrix elements are written down.

1. Introduction

In the present paper we study unitarizable root of unity representations of the Hopf algebra
pBy(1) = pBg, introduced in f1]. It is generated (essentially) by one pair of deformed
para-Bose operators a*. The imeps of pB, at generic values of ¢ are infinite-dimensional
and are realized in deformed para-Bose (pB) Fock spaces F(p), p € € [1]. The multimode
Hopf algebra p B, (n), corresponding to n pairs of deformed pB operators ali, ag‘ oo ai
was defined in [2-5]. The case of any number of deformed para-Fermi operators was
worked out in [6].

So far various deformations of para-Bose and para-Fermi statistics have been considered
from different points of view [7-22]. Some of them are not related to any Hopf
algebra structure. A guiding principle of the approaches in [1-53], which we follow,
is to preserve, similar to the non-deformed case [23], the identification of pB;(n) with
U,losp(1/2rm)): pB,(n) is an associative superalgebra isomorphic (as a Hopf algebra)
to the deformed universal enveloping algebra U,[osp(1/2n)] of the orthosymplectic Lie
superalgebra osp(1/2n).

The Hopf algebra structure of pB,(n) has an important advantage: using the
comultiplication, cne can define new representations of the deformed operators (and hence
of U,[osp(1/2n)]) in any tensor product of representation spaces. In particular one can use
the Fock space of n pairs of commuting deformed Bose operators [24-27], since they give
a representation of U,losp(1/2r)] [28]. Even in the non-deformed case the only effective
technique for constructing representations of parabosons or of osp(1/2n) (for large n) is
through tensor products of bosonic Fock spaces (see [29] for more disscusions in this
respect).

The definition of U, [osp(1/24)] in terms of its Chevalley generators is well known [30-
35]. Although for n > 1 the deformed pB operators aif, a5, .. ., a¥ are very different from

the Chevalley generators, the relations determining Uy{esp(1/2n)] through a,‘"”, azi, coyax
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are not more involved [4,5]. At n =1, namely in the case we consider, a% are proportional
to the Chevalley generators of pB; = U, [osp(1/2)].

The finite-dimensional irreps of Uz[osp(1/2)] at generic ¢ were constructed in [36, 37].
Some root of unity highest weight irreps were also obtained in [37]; both highest weight
and cyclic representations were studied in detai] in [38-40].

Our carrier representation spaces F(p), p € C will be deformed Fock spaces [1], which
are in fact the Verma modules used in [39]. For root of unity cases each such space is no
more irreducible; it contains infinitely many invariant subspaces. The irreps are realized in
appropriate factor spaces of F(p) with the vacuum being the highest weight vector,

To our best knowledge the root of 1 irreps of Uy{osp(1/2)] obtained in section 3.2 and
those labelled with an integer p (sections 3.1.1, 3.1.2, 3.3} have not been described in the
literature so far. Our other main result is the classification of the unitarizable Fock irreps of
pB, (= unitarizable Verma representations of U,[osp(1/2)]) at roots of 1 (see (4.2)). We
write down explicit expressions for the transformation of the basis under the action of the
deformed pB generators.

The reason to pay special attention to the unitarizable representations stems from
physical considerations, In all applications of deformed parastatistics known to us [7-
22] it is assumed that the Hermitian conjugate (¢ ) of the annihilation operator ¢~ equals
the creation operator at:

(@Y =at. (1.1)

In the case of deformed para-oscillators [9, 15], for instance, or more generally in any
deformed quantum mechanics (see for instance [41] and the references therein) the unitarity
condition (1.1} is equivalent (as in the canonical case) to the requirement that the position
and the momentum operators be self-adjoint operators.

The paper is organized as follows. In section 2 we recall the definition of the deformed
para-Bose algebra and its Fock representations at generic . Section 3 is devoted to 2
detailed stady of the root of 1 irreps. The non-decomposable representations both finite-
dimensional and infinite-dimensional are also mentioned. The unitarizable representations
are classified in section 4. Section 5 contains some concluding remarks.

Throughout we use the following abbreviations and notation: C, all complex numbers;
Z, all integers; Z., all non-negative integers; Zs = {0, 1}, the ring of all integers modulo 2;
[A,Bl=AB—BA,{A, Bl=AB+ BA.

2. The para-Bose Hopf algebra pB, and its Fock representations

Ta begin with we summarize some of the results from [1], slightly changing the notation.

Definition 1. The para-Bose algebra pB,, g € C\[0, &1}, is the associative superalgebra
over C with unit 1 defined by the following generators and relations:

Generators: a*, K*! (2.1}
: -1 -1 £ A2 & + - K—K7
Relations: KK~ =K " K =1 Ka™ =g7a*K {a a = W (22)
Zy-grading: deg(K*') =0 deg(a®) = 1. (2.3)
Setting K = g¥ with ¢ = €7, n € C, one recovers as ¢ —> 1 (5 — 0) the defining

relations of the non-deformed para-Bose operators [42] [{&f, a7}, a¢] = (e —na® +{c —&)a”
with H ={a*,a }and &, p,e == or £ 1.
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It has already been shown in {I] how pB, can be endowed with a comultiplication, a
counity and an antipode; here we shall be not concerned with this additional structure.

The (deformed) Fock space F(p) is defined for any p € C, postulating that F(p)
contains a vacuum vector | p; (), namely

a’|lp; 0y =0 K(p;0) =4"p; 0 (& Hlp; 0} = plp; ). (24)

At the limit g — 1 the above definition of F{p) reduces to the usval ope (¢~ |p; 0) =
0,a"a™|p; 0) = p|p; 0)), where p is the order of the parastatistics [42}.
F(p) is an infinite-dimensional linear space with a basis

lp; n) = (@*)"|p; 0) nely. (2.5)
Let
g"—q™" g +q" :
nl=*2—3— (=", : 2.6
m=—" =75 (2.6)

The transformation of the basis (2.5) follows from (2.4). The relations below are written in
a slightly more general form in order to accommodate also all root of 1 cases. For

10} |ps 1), s L) (2.74)
set

Klp;n) =q¢**"|p;n) (2.7b)

a”lp;ny=Inlln+p—1llpin—-1) for n = even number (2.7¢)

a |lpsny=[n+p—1{nHpin-1) for n = odd number (2.7d)

atlp;n)y=|p;n+1) n#L (2.7¢)

at|p; L) =0. : 279

The transformations of the basis (2.5) are given with (2.7a)~(2.7¢) when L = oco. At generic
g each Fock space F(p) is an infinite-dimensional simple (= irreducible} pB; module [1].

3. Root of unity representations

If g is a root of 1 the pB, modulfe F(p) may no longer be irreducible. More precisely,

Proposition 1. The Fock space F(p) is non-decomposable if and only if g = ei™/* for
every m, k € Z such that ¢ ¢ {£], &i}, i.e. m £ O(mod k).

Proof. We exclude from consideration g € {1, i} since at these values of g the
expressions (2.7) are not defined (at g = &1 alse p B, is undefined).

Ifg # eximm{k the coefficients in front of |p; n) in (2.7¢,d) vanish only for n = 0. Hence
the only singular vector is the vacuum, i.e. F(p) is an irreducible module. If g = ezimm/k
then, for instance, |p; 2k} is a singular vector, a—|p: 2k) = 0. Therefore the proper subspace
of F(p), spanned on |p;n), n = 2k is an invariant subspace. Then equation (2.7¢) yields

that the representation is non-decomposable. This completes the proof. O

The algebras pB, corresponding to all possible values of m and & contain several
isomorphic copies. Clearly we can always assume that £ > 0 and that m and k are
co-prime, i.e. m/k is an irreducible fraction. Further we note that the algebras pB,
and pBj are isomorphic for ¢ = e7®/* and §¥ = erm@Hm/k whenever & = + and
m=1,2,....2k—1orf=—andm=1,2,...,k— 1, since the generators % = g*¢
and K = —£K of p B satisfy the defining relations (2.1)~(2.3) for pB,. The case § = +
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indicates that we can set m € (1,2, ..., 2k — 1}; the case £ = — further shows that without
loss of generafity we can assume that m € {1,2,...,k — 1}. The case £ = 1 is excluded
from these conditions. Thus, without losing any of the algebras pB, for which the Fock
space F(p) is non-decomposable, we restrict m and £ to values which we call admissible.
The fraction m/k is said to be admissible if

m 12 kol m and k are rime k=2,3,4 3.1
P A A are ¢o-p =2,3,4,.... (3.1)
Passing to a discussion of the root of 1 representations, we first note that the vectors

|p; O}, 1ps 2k}, |y 4k), ..., | ps 2kN), ... (3.2)

are singular vectors in F(p), a™|p;2kN} = O,N € Z.. The subspaces Vipunm =
span{|p; n)|n = 2kN} are infinite-dimensional invariant subspaces of F(p) with highest
weight vectors |p; 2kN). Clearly

F(py=Vipoy O Vipany O Vipraiy O -+ D Vi) 2 -+ (3.3)

For each N < M € Z, define a 2(M — N)k-dimensional factor space Wpmm.u =
Vipoorany/ Vipioeany. Let & be the equivalence class of x € &. The vectors
&1 2kN)» E1 i 2kN 1) > Bl pi2kN+2) ) « - - Elpi2kar—1y cOnstitute a basis in Wip2em,ar. The relations
% & piny = Eutpinys K&ipimy = Exipimy endow Wiparan 4 with a structure of a pB, module.
Observe that a+§|p;2kM_.” =0.

We shall simplify the notation, identifying &,.ny with its representative |p; n). Then
equations (2.7) with L = 2kM — 1 give the transformations of Wip.emyr. EM — N >
1, equations (2.7) with L = 2kM — | define an non-decomposable finite-dimensional
representation of pB, in Wpumm forany p € C. f M = N = 1, Wpumwg Is
either irreducible or non-decomposable.

Proposition2. Foreachs € Z and N € Z, the pB, modules Wy,.0p,1 and W papeizen) n-+1
are equivalent; they carry one and the same 24-dimensional representation of pB,.

Proof. The one-to-one linear map (| p; n}) = |p+dks; n+2kN), n=0,1,2,...,2k-1
of Wimo,1 onto Wpiareorn). v+ IS an intertwining operator, ag(|p; n)) = wla|pin)),.a =
a*, K. In particular the matrices of the generators a* and K are the same in the basis of
Wip:05,1 and in the basis of Wp.areoem, a41, 185pectively. 0

In view of proposition 2 from now on we shall consider only the vacuum modules
Wipi0s,1, restricting also the values of p to the interval

0 < Re(p) < 4k (3.4)
We write W(|p; m), | p; n)) whenever we wish to indicate that [p; m), |p;m + 1), |p; m +
2), ..., |p;n} is a basis in the linear space W{|p; m}), |p; n}). In view of this W, =

W(|p;0),1p; 2k — 1)).

We proceed to study in detail the structure of the Fock spaces for different admissible
values of m/k. To this end we will consider three cases: 3.1, k is even, m is odd; 3.2, k is
odd, m is odd; 3.3, k is odd, m is even.

3.1. The case k=even, m=odd

If p is not an integer the coefficients {n + p — 1} in (2.7¢) and [n + p — 1] in (2.7d) never
vanish. Therefore the vectors (3.2) are the only singular vectors in F(p) and the vacuum
|p; 0) is the only singular vector in Wip.q,;. The eigenvalues of X on |p; 0) are different
for different p, obeying (3.4). This gives rise to the following
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Proposition 3. The pB, modules W(|p; 0}, | p; 2k — 1)) are simple for p ¢ {1,2,...,4k}.
All of them are 2k-dimensional. The irreps corresponding to different p from (3.4) are
inequivalent. The transformation of the basis is described with (2.7) for L =2k — 1.

3.1.1. Representations with even p. All modules W{|p;0}|p; 2k — 1}) corresponding to
even values of p are no more irreducible. )

Proposition 4. To each p € {2,4,...,4k} there corresponds a simple pB, module

W{ip; 01, |p; L)} with a basis |p; 0), |p; 1), ..., [p; L) and values of L as follows:
L=2%—p for pef{2,4,...,2k} (3.5)
L=4k—p for p € {2k + 2,2k 4, ..., 4k}. (3.6)

The transformation of the basis is described with the equations (2.7) for the above values
of L. All 2k modules carry different, inequivalent irreps of pB,.

Progf. 'We consider in detail the case p € {2, 4, ..., 2k}. The module W{(|p; 0). |p; 2k—1})
contains only two singular vectors |p; 0) and |p; 2k — p+1), ie. a”|p; 0} = 0,a”|p; 2k —
p+ 1) = 0. In view of (2.7¢) W(|p; 0}, |p; 2k — 1}) is non-decomposable. Its invariant
subspace W{|p; 2k — p+ 1), |p; 2k — 1)) is simple. The factor space

W(lp;0),1pi 2k = 1))/ Wllp: 2k — p+ 1), | pi 2k — 1))

with a basis £),.0), §p:1ys - - - Ejpi2k—py 18 turned into an irreducible pB, module setting
aEipmy = Eaip:my for any @ = a*, K. Therefore a*§poe-p = Eipak—psty = 0. As
before we identify the equivalence classes with their representatives: &,y = |p;n}.

Then W{(|p; Q). |p:2k — 1))/ W(lp; 2k — p+ 1), |pi 2k — 1)} = W(|p; 0}, Ip; 2k — p))
and the transformation relations of W(|p: 0), |p; 2k — p}) are given with equations (2.7) for
L = 2k — p. The transformations of the invariant subspaces are described aiso with (2.7),
butforn=2k—p+1,2k—p+2,...,2k—1=L.

The cases with p € {2k + 2,2k +4,..., 4k} are similar. The only singular vectors
in W{|p; 0, |p; 2k — 1}) are the vacuum |p;0) and |p; 4k — p -+ 1). Therefore the
invariant subspace W{|p; 4k — p+1), | p; 2k = 1)) is irreducible and its transformations are
described with (2.7) forn =4k — p+ 1,4k = p+2,...,2k — 1 = L. The factor space
W{|p; 0}, | p; 4k p}) 1s also irreducible and transforms according to (2.7} with L = 4k—p.

We have four kinds of simple pB, modules. which are pairwise equivalent:

W(lp; 2%k — p+1).1p; 2k — 1)) = W(|p, 0), |p; 4k — p'})

for p=4k — p'+2€{2,4,...,2k} (3.7)
W(lp;dk — p+1),|p; 2k —1)) = W{|p";0),|p"s 2k — p'))
for p=4k—p' +2 € {2k+2.2k +4, ..., 4k). ' (3.8)

For imstance the intertwining operator of W(|p:2k — p + 1), |p;2k — 1)) onto
W(|p'; 0}, 1ps 4k ~ p'}) reads:

e(lp;n)) ={psn)
n=2k—p+1, P42 n =0,1,2,...,4k — p'. (3.9

Thus we are left only with vacuum modules. It remains to show that all modules (3.5) and
(3.6), ie. ' '

W{lp; 0), |p: 2k — p}) and W(lp +2k; 0), |p + 2k: 2k — p))
pe(2,4,..., 2k (3.10)
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are inequivalent. To this end we observe that the modules corresponding to different
p in {3.10) have different dimensions. The modules with the same dimensions, namely
W(lp; 0), | 2k — p)) and W(lp 4 24; 0}, | p + 2k; 2k — p)) have different spectra of the
Cartan generator K and therefore are also inequivalent. This completes the proof, O

It has been noted in [37,43] that the Casimir operator of U,[asp(1/2)] is no longer
sufficient to label the root of wnity representations. In particular this is the case with the
modules (3.10), which have the same dimension. The Casimir operator [36] reads in our
notation:

20:() =*K*+ ¢ K+ (@* - g g — a7 NPK + g2k Naat

—(g* — g7 @ )M’ (3.11)
Its eigenvalue is one and the same, Ca(g) = 3(g%~2 + g™2"*2) 4 2 on four inequivalent
modules, namely

W(p;0),|p;: 2k — p}) W(lp+2k;0), [p+ 2k; 2k — p}) dim=2k—p+1
W2k —p+2,0,12k—p+2;p-2)) W(ldk ~p+2;0),[dk—p+2; p—2))
dim=p—1. (3.12)
Let us add that the additional central elements [37,38] ()% and (X)* do not

distinguish among the inequivalent modules with the same dimension. In fact the operators
(@)* vanish within each simple module W{|p; 0), |p; L}).

3.1.2. Representations with odd p.

Proposition 5. Toeach p € {L,3, ..., 4k—1} there corresponds an irreducible p B, module
W{lp; O, | p; L)) with a basis |p; 0}, |p; 1)...., |7 L), where L = p{k — 1)(mod 2k). The
transformations of the basis are given with equations (2.7) for the corresponding values of
L. All these 2k modules carry inequivalent irreps of pB,.

Proof. The proof is similar to that of proposition 4. We stress certain points only. The
modules W(lp; 0), |p; 2k — 1)) with p = £+ 1,3k + 1 are irreducible; the rest of the
maodules

W(p: 0, |p; 2k — 1)) pel{l,3,5,...,4k—1} pFEE+1L3k+1 (3.13)
are non-decomposable. Each module in (3.13) contzins apart from the vacuum only
one more singular vector. Therefore the invariant subspaces and the factor spaces are
irreducible. Also here each invariant subspace is equivalent to a factor space. Therefore
(up to equivalence)} we are left only with the vacuum modules. The modules with the same
dimension cannot be separated by the Casimir operator. They have, however, different
spectra of the Cartan generator K. Hence they carry inequivalent representations of pB,.

3.2. The case k = odd, m = odd

For any N € Z, (see (2.7)) a”|p; kN) = 0. Therefore the Fock spaces contain more
singular vectors than in the general case (see (3.2)). Now

|p:OY, ipi kY, Ips 2k), ... | ENY, ... (3.14)

are singular vectors in F(p). For each N the subspace Vp..ny = span{p; n)ln > kN}
is an infinite-dimensional non-decomposable invariant subspace of F{p). Because of the
inclusions

F(p) = Vipy O Vipiry D Vimay O -+- O Vipsawy 2 -+
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one can build up various non-decomposable finite-dimensional pB, modules. For each
N<«<Me Z+

W{lp: kNY, |p; kM — 1)) = Vipum/ Vipwan (3.15)

is an (M — N)k-dimensional non-decomposable pB, module with singular vectors
12 ENY, 1y (k4 DIN), ..., 1 ps k(M — 1)}. As before we do not distinguish between the
equivalence classes and their representatives. Since aT€pup—1) = Eatjpm—1y = 0 &
at|p; kM — 1) = 0 the transformation of the factor space (3.15) is given with equations
QNDforL=kM-1.HEM-N=1,W(p; kN), |p; k(N+1)=1}) = Vipum/ Vipieav+1)) I8
either irreducible or non-decomposable. We are mainly concerned with the classification of
the irreducible p B, modules. Therefore, as a first step, we identify some equivalent modules.
From proposition 2 we know that for a given p B, algebra (i.e. for a fixed admissible fraction
m/k} all irreps can be extracted from the collection of the modules W(|p; 0}, [p; 2k — 1))
with 0 < Re{p) < 4k. According to (3.15) (when N = 0, M = 2) the above module is
non-decomposable. It contains at least two singular vectors, namely |p; 0) and |p; k). The
subspace W{(|p; &}, |p; 2k —1}) is an invariant pB, subspace and therefore the factor space
W(lp: 0), |ps k—=1)) = W(|p; 0}, |p; 2k— 1))/ W(|p; k), | p; 2k — 1)) is also a p B; module.

Proposition 6. 'The collection of all pB, modules W(jp; 0}, | p; k —1}) is equivalent to the
collection of all invariant subspaces W(|p; k), |p; 2k — 1)) when 0 < Re(p) € 4k. More
, Drecisely,

W(p:0), | p k=1 =W(p+2k k), |p+2k; 2k~ 1)) 0 < Re(p) < 2% (3.16a)
W(ip; 0), ik — 1)) = W(lp — 2: k), |p— 2k: 2k = 1)) 2k < Re(p) < 4k. (3.16b)

Proof.  The transformations of W{|p; 0}. | p; £—1)) are given with equations (2.7) for L =
k—1. The same equations describe the action of the p B, generators on W (| p; k), | p; 2k—1})
for L=2k—1andn=4k k+1....,2k— 1. The corresponding intertwining operator g,
defined on the bases, reads:

ollpin)) =|p+28k;n+ky  n=01,2 ... k-1 (3.17)

where £ = 1 corresponds to (3.16a) and £ = —1 to (3.1658).

In view of proposition 6 we shall consider only the vacuum modules W(|p; 0), |p; & —
1}), restricting as before the values of p to the interval (3.4).

If p is not an even number the coefficients {n 4+ p — 1} in 2.7¢c) and [n +p — 1] in
(2.74) never vanish. Therefore the vectors (3.14) are the only singular vectors in F(p) and
the vacuum |[p; 0} is the only singular vector in W{|p; 0}, |p; k—1}). In contrast, if p is an
even number W(|p; 0}, ip; £ — 1)) contains an extra singular vector. We collect the results
in a proposition.

Proposition 7. The pB, modules W(|p; 0}, |p: & — 1)) are simple for p ¢ {2,4,..., 4k}
with L =k — 1. To each p € {2,4,..., 4k} there corresponds an irreducible p B, module
W(p; 0}, |p; L) with L = (k — p)(mod k), transformed according to equations (2.7). All
these modules carry inequivalent irreps of pB,.

3.3. The case k = odd, m = even

According to proposition 2 the irreps (up to equivalence) are realized in the vacuum modules
W(lp; 0}, |p; 2k—1)) with 0 < Re(p) < 4k. For the algebras from this class one can further
* restrict the values of p.
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Proposition 8. The following modules are equivalent;

W(p; 0, |ps 2k — 1)) = W{|p+ 2k; 0), |p + 24; 2k — 1) for 0 < Re(p) < 2%
(3.18)

W(p;0),Ip; 2k =1}y =W(lp+4:0), |p+ki2k—1})
for 0 < Re(p) < k and m = 4(mod 4). (3.19)

Progf. The intertwining operators are ¢{|p; n)) = {p+eok;n) forn =0,1,...,2k -1,
where ¢ = 2 for (3.18) and & = 1 for (3.19).
Hence, without loss of generality we assume

0<Re(p) <2% ifm=2(modd) and  O<Re(p)<k if m=4(modd).
(3.20)

Proposition 9. To each m = 2{mod4} with 0 < Re(p) £ 2% and to each m = 4(mod4)
with 0 < Re(p) < & there corresponds an irreducible pB; module W(|p; 0), |p; L)) with
L =2k —1if p is not an integer and with L = p{k — 1){(mod 2k) if p is an integer. All
such modules are inequivalent. They transform according to (2.7).

We skip the proof.

-

4. Unitarizable representations

In the present section we classify the unitarizable Fock representations of the deformed
para-Bose superalgebra pB,. The concept of an unitarizable representation of an arbitrary
associative algebra A depends on the definition of the antilinear anti-involution @ : A — A
and on the metric in the corresponding A-module.

Having in mind the physical condition (1.1) and the requirement the ‘Hamiltonian® H
to be a Hermitian operator, we define @ on the generators a* and X as w(g®) = a7,
w(K*) = K¥' and extend it on pB, as an antilinear anti-involution: w(wa + B&) =
a*wla) + Brw(d), wlab) = wb)w(a) forall a,b € pBy and o, f € C.

The representation of pB, in a Hilbert space W with scalar product {, } is unitarizable
if w(@) = a' for all @ € pB,. On the generators of pB, the unitarity condition
yields (a™)7 = a*, Kt = K~'. The problem is to select those irreducible modules
W(|p; 0y, | p; L)) for which the unitarity condition can be satisfied. To this end we introduce
anew basis [p;n) = a(p;n)p;r), n=1,2,..., L,a{p;n) € C which is declared to be
orthonormal. Then the unitarity condition is equivalent to the requirement that the following
two equations be satisfled:

a(p;n) 2 2sin(im(m/k)(n -+ p))cos(zm(m/ k) (n + 1)) _

a(pn+ 1y sin(mm/k) n = even {4.1a)
a(pin) [*_ 2sin(zm(m/k)(n+ 1)) cos(zm(m/k)(n + p)) -

alprn+1)| sin(xm/k) n=odd.  (4.1b)

The unknowns in the above equations are the algebras pB,, i.e. the admissible pairs m/k
and the irreducible modules W(|p: 0}, |p; L)}, i.e., the values of p and L. Equations (4.1)
have solutions only if their right-hand side is a non-negative number for any n from the
basis in W{[p; O}, [p; L}). Thus, the problem is to solve a set of inequalities. Below we list
the algebras pB, with ¢ = e2™"/* in terms of the admissible m and k and their unitarizable
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representations.

The algebra pB, Uhnitarizable modules

Mm=1k=3,57... Wilp: 0 [pik—1)0< p<2
(2)m=1:k$21416!--' W(IP;O}sIP;k_P))p=1s3,5v---~k“"‘1 -
Bym=1,k=3,517,... W{p: 04 |psk—p)) p=2,4,6..., k-1 (42)

@) m=1(mod4), k=2,3,4,... W(k—1;0), |k - ;1))
(5) m =3(mod4), £k =2,3,4,... W{(3k—-1;0), |3k - 1; 1))
6)m=3k=10,12,14.... W(|3k — 3, 0}, |3k — 3; 3)).

The above equations indicate that the algebras pB, corresponding to m = 1 and any odd
k have a continuous class of unitarizable representations. In all other cases the number
of unitarizable irreps is finite and in fact each algebra with m % 1 has no more than two
representations. In cases (4) and (5) the representation is two-dimensional. In the new basis
the matrices of the generators read: )

b (g Jeos %rr(m/k())/ sin%rc(m/k))

0 0y -
+ - =
a = (\/cos sm(m/k)/ sin g (m/ k) 0) 2
ie—%in’m/k 0 4
K = ( 0 ie%i:rrm/k) ‘

" Similarly, the four-dimensional representation from the case (6) reads:

0 «/cosPOm/ZRy/sin(3n/2k) 0 0
|0 0 JZEGATR 0
10 0 0 A/c0s(Om /2k)/ sin(3x 2k)
0 0 0 0
ie-—917r/2k 0 ' 0 0 (44)
0 e 9 0
k=1 o 0 i g
0 0 0 el

with a* represented by the transposed matrix of a~. Note that the algebras with m = 3 and
k =10,12,14,... have only two unitarizable irreps, namely (4.3) and (4.4); the algebras
with m =3 and k = 2,4, 6, 8 and those with m = 5,7, 9, ... have only a two-dimensional
unitarizable irrep. The algebras pB, with even m have no unitarizable representations at
all. -

The transformation relations of all unitarizable modules can be written in a compact
form. In the orthonormal basis |p; n) equations (2.7) read:

K|p; ny = e 30/ k@) | e gy (4.52)
et = | SGE D GG D)y ven e
a”|p;n) =\/2 sin(%n(m/k)(;;i:(zn—gllk))) COS(%R(m/k)n) ipsr—1) n=odd (450
atlpimy = \/ 2singm(m/ k) (p ;}2)’22()']’:”(’”/ B+ 1) ipin+1)  n=even (4.5d)
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el 1
oy = \Fsm(zx(m/k)(n + 1) cos(h (m/K)(p + n)) pintl)  meodd

sin(mm/k)
(4.5¢)

5. Concluding remarks and discussions

We have studied root of unity representations of the deformed para-Bose algebra pB, =
Uglosp(1/2)] with a particular emphasis on the unitarizable irreps. All of them are realized
in finite-dimensional modules with a highest and a lowest weight. The irreps from section 3.2
and also all irreps corresponding to integer p (except p = k + 1,3k 4 1 in section 3.1.2)
are new,

In the non-deformed case the representations of the para-Bose operators, corresponding
to an order of the statistics p = 1 reduce to usval Bose operators [42]. In [1] it was shown
that a similar relation holds in the deformed case for generic g. It is straightforward to
check that in the cases p=1, m = 1, k = 2,3, ... equations {4.5) recover also all root of
unity unitarizable irreps of the deformed Bose operators [24-27] as given in [1].

Using the approach of the present paper one can try to construct representations
(including root of 1 representations) for pB,(n} = U,[osp(1/2n)]. To this end one can
use pn-pairs of deformed pB operators as given in [2,4,5]. The solution, however, is not
going to be easy for arbitrary values of p, if one takes into account that the problem has
not been solved even in the non-deformed case. Only the case with p = 1 is easy. It leads
directly to root of 1 representations of Uglosp(1/2n)], if one uses g-commuting deformed
Bose operators as defined in {5]. Other root of 1 representations based on a realization with
commuting g-Bose operators (which means also the case p = 1) were obtained in [44].
In this relation we note that n pairs of commuting deformed Bose operators are already
generators of Uy[esp(1/2n)] (in the g-Bose representation). Therefore they provide the
simplest g-Boson realization of Uylosp(1/2n)] [28].

Finally we mention that all our representations correspond to g being an even root of
unity: g* = 1. In the case of deformed simple Lie algebras this seems to be the more
difficult case. Complete results only exist for ¢ being odd roots of 1 [45].
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